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SUMMARY

The effect of wavelength and relative velocity on the disturbed interface of two-phase stratified regime
is modeled and discussed. To analyze the stability, a small perturbation is imposed on the interface.
Growth or decline of the disturbed wave, relative velocity, and surface tension with respect to time will be
discussed numerically. Newly developed scheme applied to a two-dimensional flow field and the governing
Navier–Stokes equations in laminar regime are solved. Finite volume method together with non-staggered
curvilinear grid is a very effective approach to capture interface shape with time. Because of the interface
shape, for any time advancement, a new grid is performed separately on each stratified field, liquid, and
gas regime. The results are compared with the analytical characteristics method and one-dimensional
modeling. This comparison shows that solving the momentum equation including viscosity term leads
to physically more realistic results. In addition, the newly developed method is capable of predicting
two-phase stratified flow behavior more precisely than one-dimensional modeling. It was perceived that
the surface tension has an inevitable role in dissipation of interface instability and convergence of the
two-phase flow model. Copyright q 2009 John Wiley & Sons, Ltd.

Received 2 December 2008; Revised 8 February 2009; Accepted 9 February 2009

KEY WORDS: two-dimensional modeling; stability; two-phase flow; stratified flow; non-staggered grid;
curvilinear coordinate

1. INTRODUCTION

Two-phase flow is a common observation such cases occur in evaporation, condensation, cooling
tube, phase changes, and boiling of liquids. However, a usual phenomenon in industrial application
is stratified two-phase flow that happens when two different fluids are transferred simultaneously
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through a channel. This situation also occurs at power plant cooling system in which an incor-
rect estimation could lead to slug regime and tube burning. Stratified flow is considered a basic
flow configuration in horizontal and inclined two-phase systems of a finite density differential.
Models of stratified flow are important from a technical point of view, as they are often met in
industrial plants. From the hydraulic point of view, a two-phase flow in a duct is modeled to
predict the flow characteristics, including pressure drop, holdup, and are often used as a starting
point in modeling flow patterns transitions. The common assumption is that the interface sepa-
rating the phases is a plane. This assumption is appropriate for gravity-dominated systems, such
as large-scale gas–liquid horizontal flows under earth’s gravity. In reduced gravity systems, capil-
lary systems or in the case of low-density differential (such as oil–water systems), surface forces
become important. The wetting fluid tends to climb over the tube wall resulting in a curved
(convex or concave) interface. Stratified flows with curved interfaces in gas–liquid systems are
observed both in experiment and numerical simulations [1]. A configuration of a curved interface
is associated with a different contact area between the two fluids and between the fluids and
the pipe wall. Depending on the physical system involved, these variations can have prominent
effects on the pressure drop and transport phenomena. In order to prevent further complication
in numerical modeling, usually a rectangular two-dimensional duct passage is considered. There-
fore, the flow regime is considered one-dimensional and parallel to the duct length. Once the
location of the fluid interface is known, then a two-dimensional velocity profile in a steady and
fully developed axial laminar flow of stratified layers is obtained via analytical or numerical
method [2].

In this paper, each fluid phase is solved independently. The required boundary conditions follow
from the no-slip condition at the pipe wall and continuity of the velocities. The surface tension
effect across the fluid’s interface is considered as a coupling equation to link two sets of equation.
A simple calculation for horizontal fully developed flow shows that Navier–Stokes in vertical
direction yields a linear variation of the pressure in this direction due to the hydrostatic pressure.
For axial, fully developed flow, the hydrodynamic stresses normal to the fluids interface vanish. In
this case, the equation for the interface location evolves from the condition of equilibrium between
the pressure jump across the interface and the surface tension force.

The effect of the wave generated on the interface of fluids, relative velocity, and surface tension
is taken into consideration. Therefore, a small disturbance—a sinusoid curve—initially introduced
on the interface. As time increases, depending on the relative velocity of two phases and nature
of fluids, the disturbance would grew up or tend to level out. This condition can be taken into
consideration for stability or instability criterion.

2. GEOMETRICAL CONSIDERATION

As stressed earlier, to capture interface shape more precisely, the pressure value near the surface
shall be determined as accurately as possible. In the previous work, [3] at each section, the
pressure average for liquid and gas flow was calculated. Although this simplification leads to a
straightforward simulation of the flow field and results in overall estimation of interface shape,
but it cannot evaluate the instability condition and onset of slug formation as exactly as required.
Furthermore, the viscosity term of Navier–Stokes equation was added to equation of Character-
istics model [4]. So, the grid of the flow field for each phase was separately generated. Because
of interface variation at each time step, grid arrangement is adapted to new geometry. Hence, the
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system of equations shall be solved in a curvilinear coordinate. To solve the Navier–Stokes equa-
tion for each phase, we used a Cartesian velocity component in strong conservation form which
when used together with a finite volume method, automatically ensures the global momentum
conservation during the course of calculation [5]. The use of Cartesian velocity components as
the primary dependent variables has also the advantages that the governing equations remain in
a simple form. On the other hand, the use of covariant or contra variant velocity components
(or volume fluxes) results in extra sources terms and more complicated equation. At any time
advancement, four equations—in horizontal and vertical direction—are to be solved, so the stag-
gered grid method is time consuming. In two-dimensional problems, all two Cartesian velocities
are defined on each control volume face resulting in the definition of six velocities and the solu-
tion of six momentum equation per control volume. Moreover, a spatial interpolation scheme
needs to be used to prevent decoupling of covariant velocity components from the pressure field.
The result shows that a staggered grid method in curvilinear coordinate may require a large
amount of computer memory to store the matrices of variables. In other words, although the
staggering of the velocity components is of huge benefit on rectangular meshes but the method
does not extend easily to curvilinear coordinate. In the approach presented here, all quantities
are solved and stored at the element center. The face values of the velocity components have to
be calculated from these element-based values. This leads to the need to employ an alternative
interpolation method, The Rhie–Chow interpolation method does not suffer from the checkerboard
effect [6].

Because of the non-staggered grid layout, the accuracy of this method is not affected by grid
orientation. Based on insights from the above, we have extended the non-staggered grid method,
which was developed for steady single-phase flow to solve the time-dependent incompressible
two-phase flow in curvilinear coordinate. In this method, the Cartesian components of velocity
and pressure are computed at cell center while volume fluxes are determined on its corresponding
faces. Figure 1 shows the non-staggered grid cell place of storing variables.

The governing equations and the coordinate transformation are presented in Section 3. The
numerical method is described in Section 4.

Figure 1. Non-staggered grid method; u, v: Cartesian velocity components; U ,
V : volume fluxes; p: pressure.
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3. GOVERNING EQUATIONS

The governing equation for each phase with constant viscosity and density as follows:

�ui
�xi

=0.0, i=1,2 (1)

�ui
�t

+ �(uiu j )

�x j
=− �p

�xi
+ ��i j

�x j
+S, i, j =1,2 (2)

�i j =�
�ui
�x j

, i, j =1,2 (3)

where ui represents Cartesian velocity components, p is the flow field pressure divided by density
of phases, � is kinematical viscosity of each phase, and S denotes the source term (e.g. gravity
force). Equations (1)–(3) are similar for both gas and liquid flow field. For horizontal duct, it is
assumed that the liquid occupies the lower section and the gas flows over the liquid as shown in
Figure 2. Equations (1) and (2) are transformed into curvilinear coordinates as follows:

�Um

��m
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J is the Jacobean or the volume of the cell.
Um is the volume flux normal to the cell surface of constant �m and Gmn is the geometrical

diffusion or mesh skewness tensor.

Um =u j A
m
j = J

��m
�x j

u j (7)

Figure 2. Schematic passage of liquid and gas phase and interface shape in the duct.
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Integrating Equations (1) and (2) over the cell volume and using Stokes theorem, and over the
time step �t , the following equations are obtained:∑

c.s
Unn+1
m =0.0 (10)
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where c.s. indicates that the summation is carried over the cell surfaces.
The superscript nn in equation above represents the time advancement.

4. NUMERICAL METHOD

As noted earlier, the shape of the interface at any time step dictates a curvilinear grid, which is
discussed to be non-staggered. However, in order to solve equation in computational space it is
aimed to be orthogonal with unit increment along the x and y direction, i.e. orthonormal space.
Figure 3 shows the mapping of a skewed mesh onto orthonormal space.

When m �=n, Gmn determines the mesh skewness. In other word, when the grid in physical
space is orthogonal, the off-diagonal viscous terms will be vanished. Generally, this term has less
significant contribution unless the grid is severely skewed and usually treated explicitly in order
to yield a simple calculation [7]. However, in highly skewed mesh—in our problem when the slug

Figure 3. Orthonormal mapping of physical space onto computational space (we use to some extent, the
notation of Robert and co-workers [7]).
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Figure 4. Clustering of mesh at the proximity of interface and walls
(interface curvature shown exaggerated).

regime starts to be developed, the interface rises sharply and hence mesh skewness increases—it is
necessary to reduce time step as much as possible. The convective terms are approximated using
both quadratic upwind interpolations (QUICK) and second-order upwind scheme. Time advancing
is considered explicit as it is described in Section 3. In order to capture precisely the flow structure
near the wall and better handling of properties and flow characteristics near the interface, the grid
has been clustered at the lower and upper of the duct and proximity of the interface using an
exponential distribution, as shown in Figure 4.

5. PRESSURE TREATMENT

The Navier–Stokes equations are often integrated with respect to time using the fractional step
procedure. This method was first proposed by Harlow and Welch [8]. In this method, the Navier–
Stokes equation without pressure term is integrated to obtain an intermediate velocity field, which
will in general not to be divergence free. Then a correction is applied to that velocity field to
produce a velocity field, which satisfies in continuity equation. An orthogonal mapping from
intermediate velocity field to divergence-free velocity field. This half stage in time advancing
is called the projection step. It was shown that the time accuracy of projection method is first
order [9]. There are two main reasons that the CPU time will be increased; first, solving two
flow fields separately and second, the explicit time advancement, which is due to approximation
of spatial term at previous time step. However, to reduce CPU time, a non-iterative projection
method known as (P1) is used. In this method, the momentum equation is solved explicitly without
pressure term. The intermediate velocity obtained in this stage is substituted in continuity equation,
which yields Poisson equation. In P1 projection method, it is necessary to solve Poisson equation
very accurately.

Consequently, the following steps shall be performed for any time advancement:

1. Prediction step: Solving Navier–Stokes equation without pressure gradient term:

u∗
i −unni
(�t/2)

J =
[
Umui −�Gmn �ui

��n

]nn
(12)

2. Poisson equation: Intermediate velocity u∗
i are substituted in Equation (4) to obtain Poisson

equation

�

��m
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m
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In this relation, subscript denote time step, ∗ denote intermediate parameter, and � is time
and spatial discretization.

3. Correction step: The new velocity obtained using the correction equation:

unn+1
m −u∗

m

�t
= �p

��m

��m
�xi

(14)

There are few points to be considered to solve the Poisson equation. It is necessary to interpolate
velocity at cell center and compute volume flux at faces, which is the source term of Equation (13).
Since in P1 projection method the pressure term is ignored in momentum equation at prediction
step, the checker-board condition will not occur; consequently it is not necessary to use non-linear
interpolation. However, in order to achieve more precise results both second- and third-order
interpolation are used. Another point is that because geometry diffusion is vanished for off-diagonal
term in orthogonal coordinate, the boundary conation is zero gradient of pressure in direction
perpendicular to wall. Nevertheless, for the present case in which the coordinate is not orthogonal,
the boundary condition shall be derived using flux equation for cell adjacent to wall:

Unn+1
m =U∗

m−�t

(
Gmn �pnn+1

��n

)
(15)

when the boundary is a duct wall, volume flux is given, so Unn+1
m is constant in time. The value

of U∗
m is computed from u∗

m at cell face, which is extrapolated from the velocity at cell center
Figure 5.

Since the flux is given at boundary, the boundary value for pressure is obtained from
Equation (15). It should be noted that the flux value at the interface is zero, because it is assumed
there is no mass transfer through the interface due to evaporation or condensation.

Figure 5. Calculation of volume flux near the boundary to obtain boundary condition.
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6. COUPLING OF TWO PHASES

As the flow field was computed for two phases using disturbed interface as the initial condition,
the pressure values were obtained at the last grid point near the interface along the ducts. The
pressure value is substituted in surface tension equation

�=−�P

R
(16)

where � is the surface tension, R is interface curvature at any point, and �P is obtained from the
following equation:

�P=�l pl−�g pg (17)

where pl and pg are the pressure of the last grid point value near the interface divided by density
for liquid and gas, respectively. Figure 6 shows schematically the nearest node to interface.

After the pressure field is obtained, the curvature of interface can be estimated. For the next
time step, the new shape of interface is the new boundary condition at the interface of two phases.
The velocity boundary condition at interface is also considered so that the interface velocity is the
average of two-phase velocity at on grid apart from interface i.e.:

Vinterface=0.5(Vliquid+Vgas) (18)

Figure 6. Last point position of phases near the interface for coupling system of equation.
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7. RESULTS

To investigate the stability condition of a two-phase flow, a channel with the length L=1m, and
height H =0.1m, and initial void fraction (the volume ratio of gas to liquid) �g=0.5 is assumed
(�l=1−�g). Liquid and gas are water and air with the following properties:

�water=998kg/m3, �air=0.995kg/m3

	water=1.0×10−3 kg/ms

	air=1.8×10−5 kg/ms

�=0.0728N/m

At the first step, for relative velocity �v=0.3m/s, (�v=vwater−vair) , a small sinusoid disturbance

0(x)=[�l+0.005sin(2�x/�)]. H is introduced on the interface of two phases, which defines
the initial shape of the interface. Here � is the initial value of the wavelength. With time, the
height of interface with respect to duct length, which is hereafter termed 
(x), decreased until
it approaches to zero. The most important advantages of two-dimensional solution with respect
to one-dimensional modeling considered here [3] is that one can trace the interface shape from
onset of damping to full dissipation state. However, in one-dimensional modeling, only the onset
of damping or growth of perturbation can be perceived.

As expected, because of relative velocity 0.3m/s, the critical wavelength is about 1.26m, so
the imposed perturbation is dissipated, until it is completely damped (�<1.26m), Figure 7. The
analytical relation for critical wave number kc, in the notation of the present paper, is as follows [4]:

kc=|�v|·[�l ·�g/�H(�l�g+�g�l)]0.5 (19)

So the critical wavelength, �c, is obtained as:

�c=2�/kc (20)

Variation of the critical wavelength versus relative velocity of two phases is shown in Figure 8,
using the Equation (20).

Here, in addition to the onset time of damping time, one can trace the interface after it is
completely dissipated, Figure 7.

With the same relative velocity, the perturbation wavelength has been changed to 0.5m.
Figure 9 shows that as the wavelength decreases, the damping time also decreases.
In order to examine dissipation effects of viscosity, first, the relative velocity is assumed to be

�v=1m/s. According to one-dimensional characteristics method, the critical wavelength will be
about 0.38m. But the interface shape shows that it tends to level out although it takes time longer
than when �v=0.3m/s. Despite of the critical limit that is predicted by non-viscous modeling as
shown in Figure 10, our new model predicts physically more accurate critical limit for perturbation
wavelength. Strictly speaking, the critical wavelength, beyond which perturbation will grow, is
slightly larger.

Compared with results obtained by non-viscous one-dimensional modeling, which has shown
variation of (�(
(x))=
(x)max−
(x)min) with respect to time for different relative velocities, in
the notation of the present paper, as perceived from Figure 11, the viscosity has an inevitable
role in dissipation of interface instability; comparing with one-dimensional modeling in which the
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Figure 7. Dissipation of perturbation on interface (�v=0.3m/s,�=0.5,�=1m).

Figure 8. Critical wavelength with respect to relative velocity (�=0.0728N/m).

viscosity was neglected, at the same time and after the initial state, the wave has been damped
more.

To compare our results with the characteristic method approximation, a spatial growth of wave
along the channel is computed and presented. As depicted in Figure 8, for a specific relative
velocity if the wavelength is larger than a critical value, the perturbation will grow up. Based on
Figure 8, for arbitrary value corresponding to an unstable region i.e. relative velocity �v=0.5m/s
and wavelength �=1.5m perturbation grows; our results presented in Figure 12 also indicates
growth of perturbation, however, the growth is less than corresponding one-dimensional model.

Present model (two-dimensional, including the surface tension and viscosity parameters) not
only has more predictive capability but also establishes convergent results. The results obtained
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Figure 9. Dissipation of perturbation on interface (�v=0.3m/s,�=0.5,�=0.5m).

Figure 10. Dissipation of perturbation on interface (�v=1m/s,�=0.5,�=0.38m).

by such a model could lead to better modeling of the behavior of two-phase flow systems and
hence to better system design and control. In order to verify the results obtained by the numerical
method, the total number of mesh points, nx ×ny, where nx and ny are the number of mesh points
in the parallel and perpendicular direction of duct length, respectively, was increased on the same
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Figure 11. Comparison of one-dimensional and two-dimensional modeling of
two phase flow (�=1m,�=0.5, t=0.2s).

Figure 12. Perturbation growth for wavelength larger than critical value for a specific relative
velocity (�v=0.5m/s,�=0.5,�=1.5m).

duct scale. The results indicating decay of the perturbations, �(
(x)), are presented in Figure 13.
As it is obvious, when the mesh point’s numbers were increased, convergence was obtained. The
number of mesh points for each phase in the direction perpendicular to duct is the same and equal
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Figure 13. Grid independency; the difference for large number of mesh points is negligible.

to ny/2. The difference between the results obtained for the total number of mesh points 80×70
and 80×80 is negligible.

8. CONCLUSION

It is shown that including viscous terms in Navier–Stokes equations makes the solution more
realistic. Also using two-dimensional modeling helps to capture interface behavior as precisely as
possible. In other words, the coupling pressure equation, which links two phases at interface, can
be more effective when pressure of the nearest point to interface for each phase is used. As an
important conclusion, two-dimensional modeling predicts critical wavelength slightly larger than
that of one-dimensional modeling forecast. This conclusion is absolved with dissipation effects of
viscosity terms. Also the increase in instability with increase in initial perturbation is the same as
previous results although the value of critical wavelength is greater. Finally, it can be concluded
that for the same instant after initial condition, the two-dimensional model predicts the growth or
damping of the perturbation on the interface a little lesser than that of the one-dimensional model.

REFERENCES

1. Newton CH, Behnia M. A numerical model of stratified wavy gas–liquid pipe flow. Chemical Engineering Science
2001; 56:6851–6861.

2. Newton CH, Behnia M. Estimation of wall shear stress in horizontal gas–liquid stratified flow. American Institute
of Chemical Engineers Journal 1996; 42:2369–2373.

3. Ansari MR, Sani AE. Surface tension effect on stability of two-phase stratified flow. Fluid Dynamics Research
2007; 39:279–291.

4. Ramshaw JD, Trapp JA. Characteristics, stability and short wave length phenomena in two-phase flow equation
system. Nuclear Science Engineering 1978; 66:93–102.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:733–746
DOI: 10.1002/fld



746 G. HEIDARINEJAD AND A. E. SANI

5. Ferziger JH, Peric M. Computational Methods for Fluid Dynamics. Springer: Berlin, Heidelberg, New York, 2002.
6. Rhie CM, Chow WL. Numerical study of the turbulent flow. Past an airfoil with trailing-edge separation. AIAA

Journal 1983; 21(11):1525–1532.
7. Zang Y, Street RL, Koseff JR. A non-staggered grid, fractional step method for tome-dependent incompressible

Navier–Stokes equation in curvilinear coordinates. Journal of Computational Physics 1994; 114:18–33.
8. Harlow F, Welch E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free

surface. Physics of Fluids 1965; 8:2182–2189.
9. Armfield S, Street R. An analysis and comparison of the time accuracy of fractional-step methods for the

Navier–Stokes equations on staggered grids. International Journal for Numerical Methods in Fluids 2002; 38:
255–282.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:733–746
DOI: 10.1002/fld


